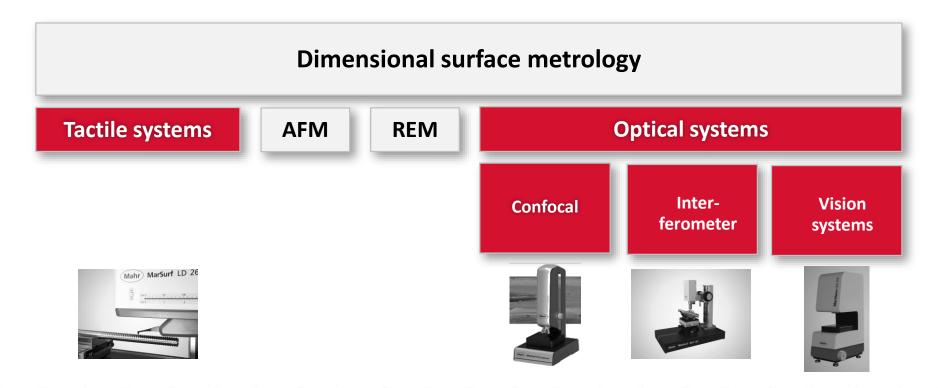


OPTICAL 3D SURFACE METROLOGY FOR INDUSTRY & RESEARCH

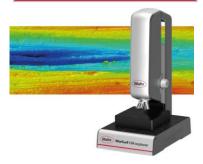
Benjamin Oevermann Global Account Management 3D Surface

MarSurf CM/CP/CL Series – Optical 3D Surface Inspection

Company


- Founded in Germany in 1861
- 2.000 employees worldwide
- > 1.000 products for Metrology Applications
- Global Service and Support network

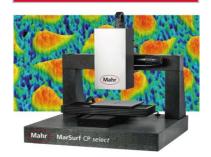
Mahr Headquarters Göttingen, Germany



Technology - Dimensional surface metrology

Technology - Platforms

MarSurf CM



3D microscopy

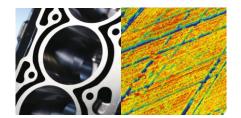
- 3D roughness
- 3D structure
- Wear & tribology

MarSurf CP

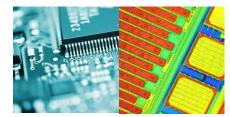
2D/3D profilometry

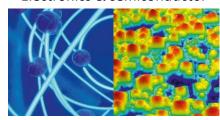
- 2D/3D form
- Defect detection
- Roughness

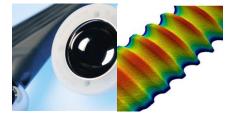
MarSurf CL


3D profilometry

- 3D form
- Defect detection
- Production control

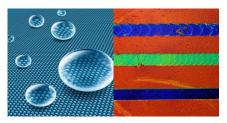



Applications - Industries


Automotive

Electronics & semiconductor

Energy

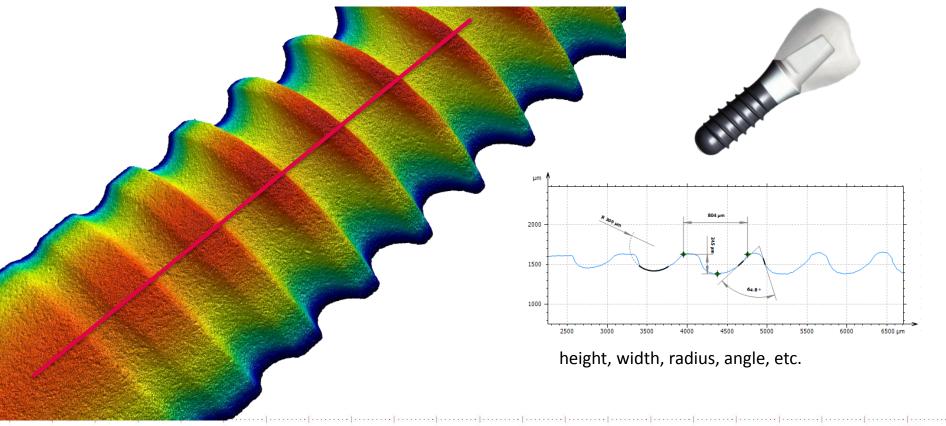

Medical technology

Printing and security

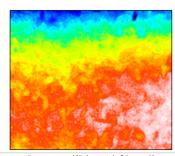
Microsystems


Materials science

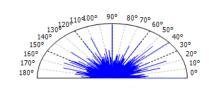
Tools



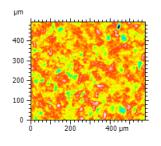
Applications – Measurement Tasks

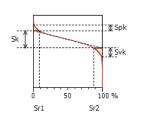


Applications – Dental implants - Microgeometry

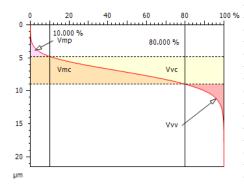


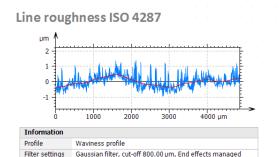
Applications – Dental implants – Surface Roughness


Surface Roughness ISO 25178

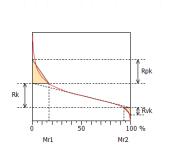


Form removed (Polynomial of degree 2)
-32.419 - 0.011174*x + 7.4071e-05*x2 - 0.34682*v - 5.6

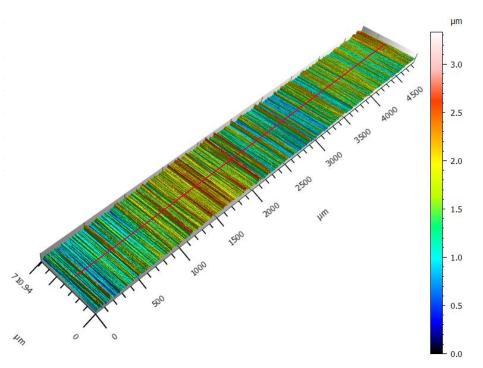

Parameters	Value	Unit
Isotropy	82.198	%
First Direction	40.771	0


Information							
Filter settings	Unfiltered.						
Parameters	Value	Unit					
Sk	5.1605	μm					
Sa1	0.071167	μm³/μm²					
Sa2	0.15479	μm³/μm²					

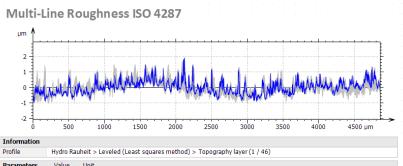
ISO 2517	78						
Height Par	rameters						
Sa	1.6475	μm	Arithmetic mean height				
Sp	7.3204	μm	Maximum peak height				
Sv	14.189	μm	Maximum pitheight				
Sz	21.510	μm	Maximum height				
Feature Parameters							
510z	15.496	μm	Ten point height				


Parameters	Value	Unit
Vmp	0.086228	ml/m2
Vmc	1.8612	ml/m2
Vvc	2.3478	ml/m2
Vvv	0.27781	ml/m2

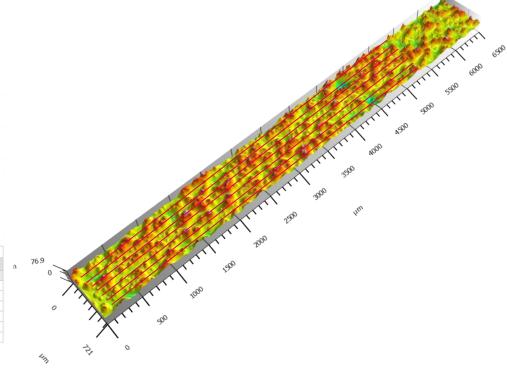
Applications – Line Roughness ISO 4287


ISO	4287		
Ampl	itude param	eters -	Roughness profile
Ra	0.23221	μm	Gaussian filter, 0.8 mm, End effects managed
Rz	1.8008	μm	Gaussian filter, 0.8 mm, End effects managed
Rn	1.1889	um	Gaussian filter, 0.8 mm. End effects managed

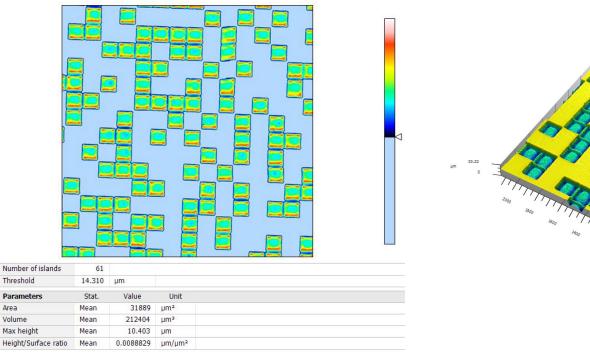
Gaussian filter, 0.8 mm, End effects managed Gaussian filter, 0.8 mm, End effects managed

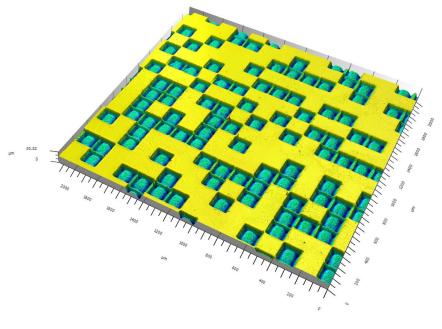


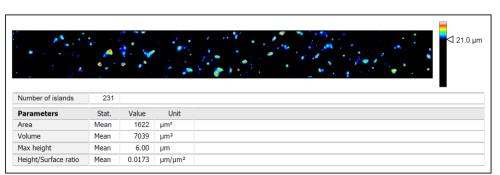
Filter settings	Gaussian filter, 800.00 µm, End eff									
Parameters	Value	Unit								
Rk	0.60868	μm								
Rpk	0.58861	μm								
Rvk	0.18039	μm								
Rpk*	1.2763	μm								
Rvk*	0.33329	μm								


Information

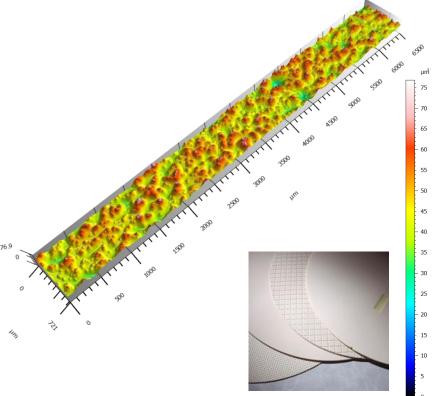
Applications – Multi-line Roughness ISO 4287

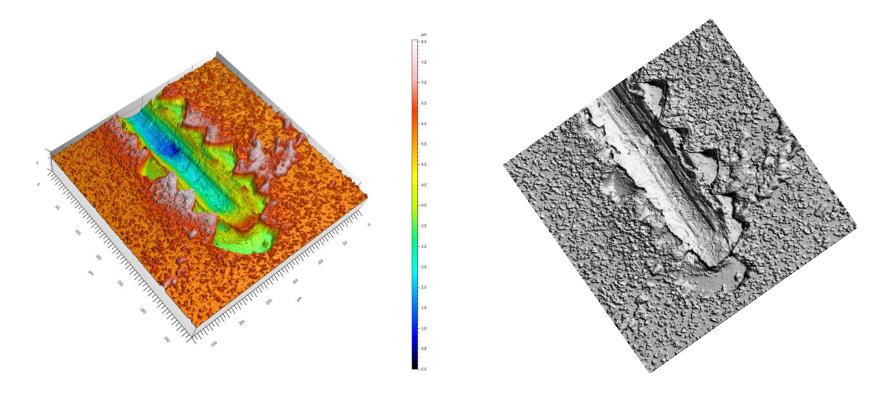



		Context	Mean	Std dev	Min	Max
ISO	4287					
Amp	litude pa	arameters - Roughness profile				
Ra	μm	Gaussian filter, 0.8 mm, End effects managed	0.23156	0.0086245	0.21755	0.24369
Rz	μm	Gaussian filter, 0.8 mm, End effects managed	1.8093	0.038585	1.7148	1.8910
Rp	μm	Gaussian filter, 0.8 mm, End effects managed	1.1999	0.033306	1.1186	1.2721
Rv	μm	Gaussian filter, 0.8 mm, End effects managed	0.60941	0.022726	0.55250	0.67792
Rt	μm	Gaussian filter, 0.8 mm, End effects managed	2.2476	0.079546	2.1117	2.4793
Rq	μm	Gaussian filter, 0.8 mm, End effects managed	0.30941	0.0097059	0.29351	0.32151


4859.4 µm

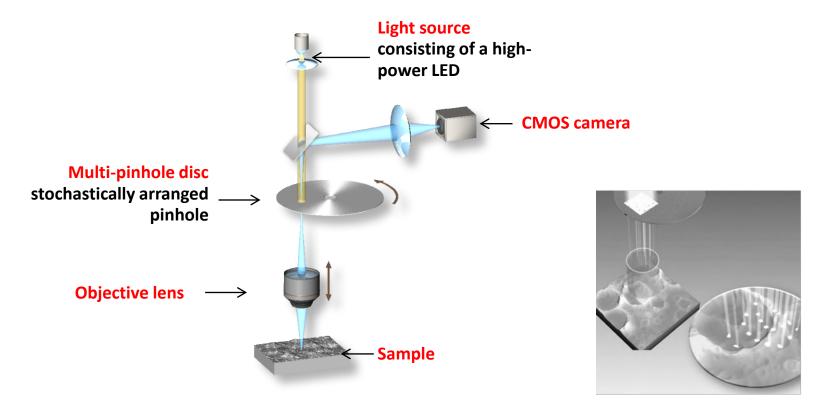
Applications – Data Matrix Code – Volume/Depth



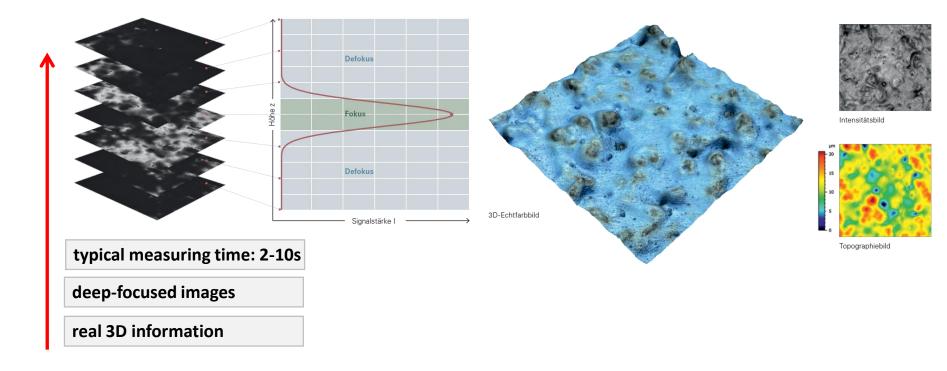

Applications – Polishing Pad - Particle anaylsis

Statistics over all grains - Binarized image after thresholding (21 μm)									
Global information	Value								
Number of grains	231								
Total area occupied by the grains	37479	3 μm² (8.0	00%)						
Grain parameters	Unit	Mean	Std dev						
Area	μm²	1622	2816						
Perimeter	μm	131	138						
Min diameter	μm	22.7	21.2						
Max diameter	μm	45.2	46.5						
Roundness		0.575	0.191						

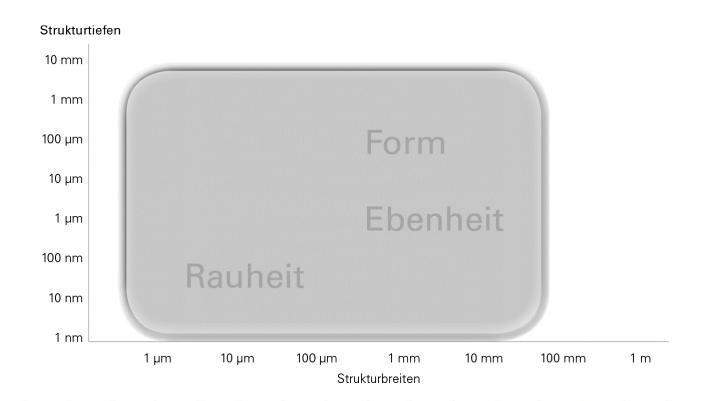
Applications – Coated Surface – Defect analysis



MarSurf CM


© Mahr GmbH

(Mahr)


MarSurf CM - Confocal construction

MarSurf CM - Confocal image analysis

MarSurf CM fields of application

- Roughness (3D/2D)
- Form (3D/2D)
- Topography
- Long waviness
- Flatness
- Wear

Technology - Traceability of results and auditability

- Each measuring instrument is approved according to VDI/VDE guideline 2655
- The measuring accuracy is determined and calibrated according to international standards using PTB-certified standards:
 - Flatness standard
 - · Depth setting standard
 - Lateral standard
- Additionally the system is approved according to roughness
 - Roughness standards
- The user can regularly carry out the calibration himself or order it.

Silicon flatness standard (ISO12179)

Type A2 (ISO 5436-1, 57044 PTB 12)

Type C3 (ISO 5436-1, 4097 PTB 01)

Type D1 (ISO 5436-1, 57209 PTB 11)

MarSurf Technology - Profile accurate surface measurement

99% correlation between a tactile and an optical measurement with the MarSurf CM

Comparative study:

Correlations of topography measurements of NIST SRM 2460 standard bullets by four techniques, Meas. Sci. Technol., London 2006

Correlation between stylus profilometry and optical technologies

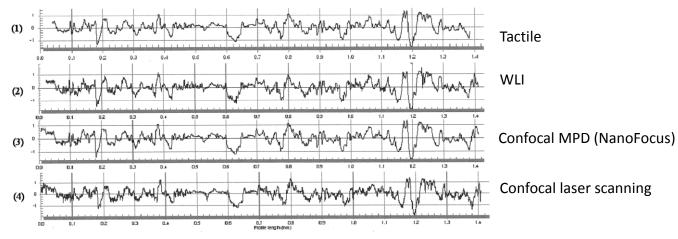
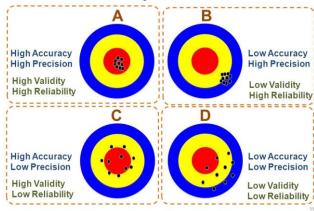


Figure 2. The profile of a standard bullet is measured by four techniques. 1) Stylus instrument, $CCF_{max} = 99.6$ %; 2) Interferometric microscope, $CCF_{max} = 92.1$ %; 3) Nipkow disk confocal microscope, $CCF_{max} = 99.0$ %; 4) Laser scanning confocal microscope, $CCF_{max} = 95.3$ %. The vertical unit is μ m, the horizontal unit is mm.

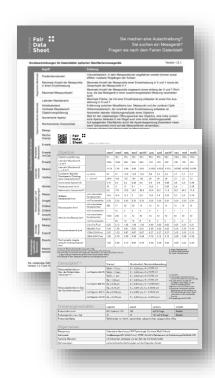
CCF(ACF): Auto-Correlation-Function

MarSurf CM Accuracy


Accuracy ^{1,2}		Standard	Uncertainty, standard deviation			
Measurement uncertainty by the example of step height measurement ^{2,3,4,5,6}		Step = 75 μm	U = 0.320 μm, σ = 0.050 μm			
	with objective lens 800 XS	Step = 10 µm	$U = 0.060 \ \mu m, \ \sigma = 0.020 \ \mu m$			
	000 X3	Step = 1 µm	$U = 0.030 \ \mu m, \ \sigma = 0.004 \ \mu m$			
		Ra = 1.63 μm	$U = 0.040 \ \mu m, \ \sigma = 0.004 \ \mu m$			
	with objective lens 800 XS	Ra = 0.58 μm	U = 0.024 μm, σ = 0.0066 μm			
Measurement uncertainty	000 X3	Ra = 0.23 μm	U = 0.010 μm, σ = 0.0050 μm			
by the example of rough- ness measurement ^{2,3,4,5}	with objective lens 320 S	Ra = 0.079 μm	U = 0.010 μm, σ = 0.0022 μm			
	with objective lens 160 XS	Ra = 0.079 μm	U = 0.003 μm, σ = 0.0004 μm			

L: long working distance S: normal working distance

XS: short working distance


- 1) 1) VIM 2012
- with image acquisition module 1200x1200 with fine positioning unit
- 3) U according to ISO/IEC GUIDE 98- 3:2008(E), GUM:1995, K=1.96 (level of confidence 95%)
- 4) σ determined with 25 measurements
- Measured in best possible conditions using PTB certified standards. Results only apply for the standards used.
- 6) Evaluation according to ISO 4287

Accuracy vs. Precision

Fair Data Sheet Initiative

Definition of a comparable data sheet for optical surface measuring instruments

Sponsorship:

- PTB
 Physikalisch Technische Bundesanstalt
- ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e.V.
- VDI
 Verein Deutscher Ingenieure e.V.

Scientific monitoring:

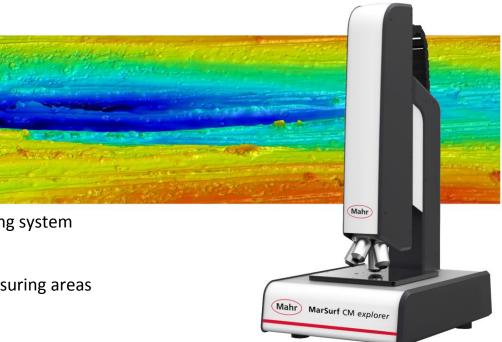
Prof. Jörg Seewig
 Technische Universität Kaiserslautern
 Institute for Measurement and Sensor-Technology

User representatives

- Daimler AG
- Robert Bosch GmbH
- Audi AG

Producer

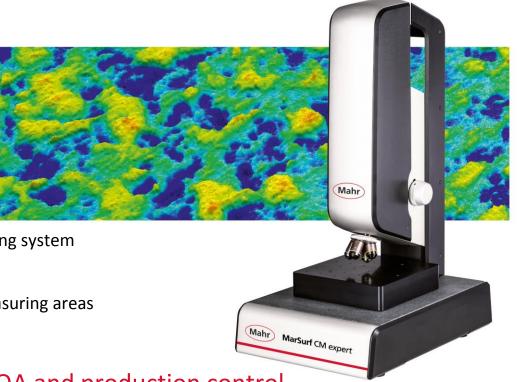
- NanoFocus AG
- Polytec
- Alicona
- Mahr


Mahr offers the customer transparency and reliable specifications, some of which the competition deliberately does not indicate.

MarSurf CM – Product line

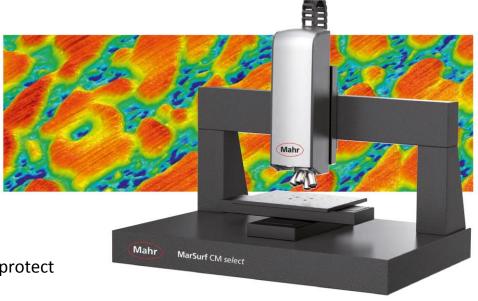
MarSurf CM explorer - Flexible all-round measurement solution

- Compact design
- Robust and reliable
- High measuring speed
 - even at full resolution
- User-friendly concept
- Safety through collision detection in all directions to protect the workpiece and measuring system
- High Dynamic Range (HDR) function 16 Bit
- Consistently high resolution even with large measuring areas thanks to HD stitching


3D measuring system for research & QA

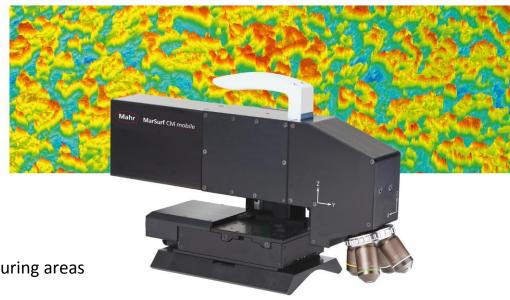
MarSurf CM expert - Automated high-end measuring system

- Extended work area in xyz direction
- User-independent series measurements using automation software
- High measuring speed
 - even at full resolution
- User-friendly concept
- Safety through collision detection in all directions to protect the workpiece and measuring system
- High Dynamic Range (HDR) function 16 Bit
- Consistently high resolution even with large measuring areas thanks to HD stitching

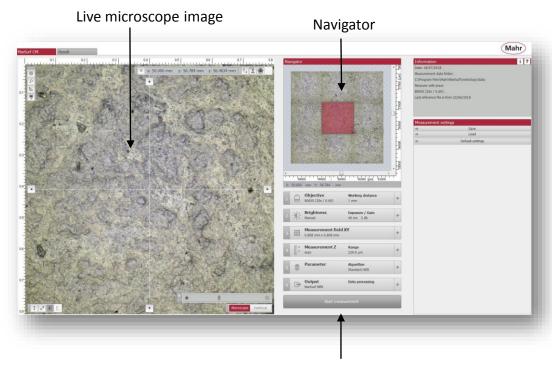

3D measuring system for research, QA and production control

MarSurf CM select - Tailor-made surface measurement

- Designed for continuous operation
- Automation software with industrial interfaces for transfer to QA systems
- Individually configurable to your sample size (modular system)
- multi-sensor technology
- · High measuring speed even at full resolution
- User-friendly concept
- Safety through collision detection in all directions to protect the workpiece and measuring system
- High Dynamic Range (HDR) function 16 Bit
- Consistently high resolution even with large measuring areas thanks to HD stitching


3D measuring system for QA & production

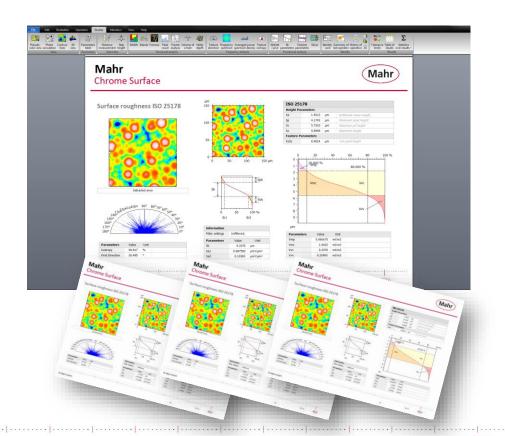
MarSurf CM mobile - Ready for use anywhere


- Mobile use enables testing directly on the component/tool - even with minimum tool life
- High measuring speed
- Compact system (5kg) with motorized axes for HD stitching
- Motorized xyz-axis
- Robust and reliable for use in production
- High measuring speed even at full resolution
- User-friendly concept
- Consistently high resolution even with large measuring areas thanks to HD stitching

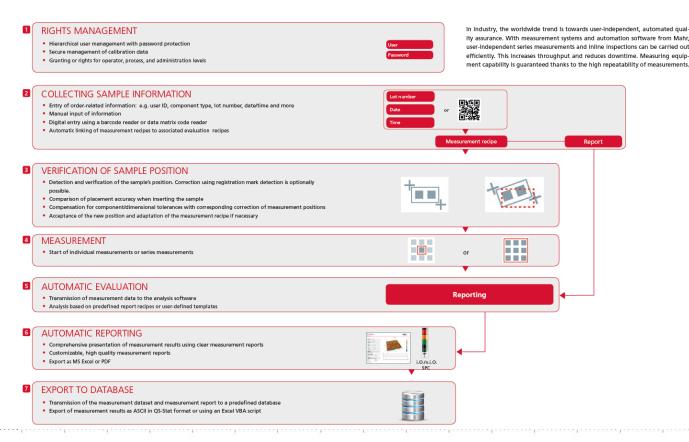
Mobile Solution

MarSurf MSW – Acquisition Software

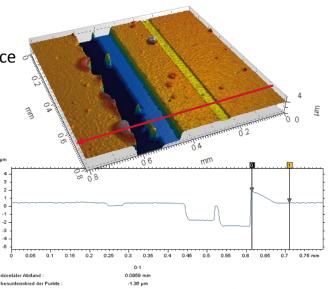
- Measurements by one click
- Access to real raw data
- Navigation function
- Snapshot Technology (Auto-Intensity, Auto-Range)
- HD-Stitching
- Shape-Tracing



Automatic/Manual adjustment of the measurement parameters


MarSurf MfM – Evaluation Software

- 1-click-evaluation
- Protocol function
- ISO-compliant parameters
- Multiple 2D-, 3D- and 4D analysis functions
- Transparent data processing
- Industry standard solution


MarSurf ASW – Automation Software

MarSurf CM - Advantages of confocal technology

- Non-destructive, material-independent surface detection
- No sample preparation necessary
- Physical principle for data acquisition
- Measurement of transparent materials
- High measurement speed
 – even at full resolution
- Reliability due to collision detection in all directions to protect your workpiece and measuring system
- High Dynamic Range (HDR) function 16 Bit
- Consistently high resolution thanks to HD stitching even with large measuring area
- User-friendly concept
- Optimum documentation due to a combination of imaging and measuring value acquisition
- Reliable, robust and industrial-strength

MarSurf CP/CL

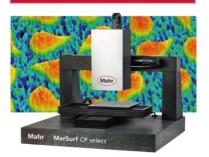
© Mahr GmbH

32 · GAM 3D Surface · 2018

Mahr

Technology - Platforms

MarSurf CM



3D microscopy

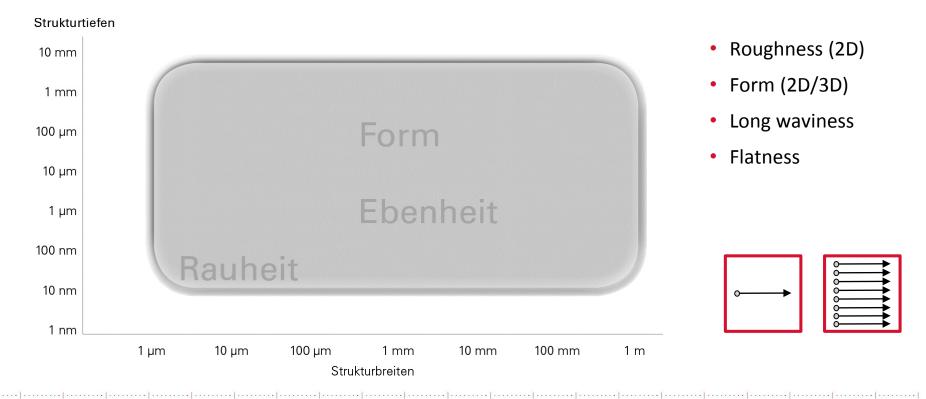
- 3D roughness
- 3D structure
- Wear & tribology

MarSurf CP

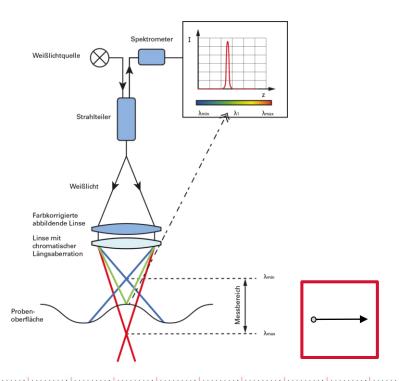
2D/3D profilometry

- 2D/3D form
- Defect detection
- Roughness

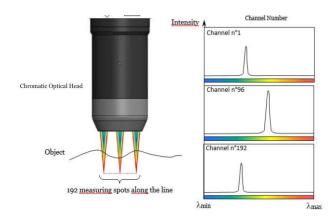
MarSurf CL


3D profilometry

- 3D form
- Defect detection
- Production control



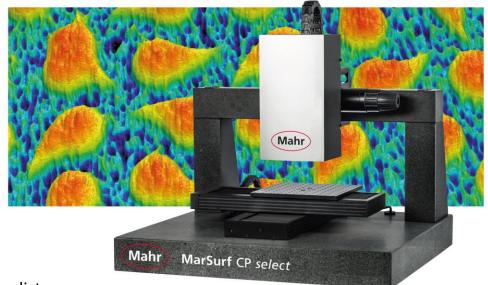
MarSurf CP & CL fields of application


MarSurf CP & CL technology

Chromatic sensor CP

Chromatic sensor CL

192 channels



MarSurf CP select - Optical 2D/3D profilometry

- Customizable (modular system)*
- Different sensor combinations
- Large-area 3D measurements
- Very high measuring speed
- User-independent series measurements using automation software
- Excellent acceptance of steep flanks
- Coating thickness measurement and measurement of transparent materials
- Large height measurement range with large working distance
- Production-optimized structure
- Robust and reliable
- User-friendly concept

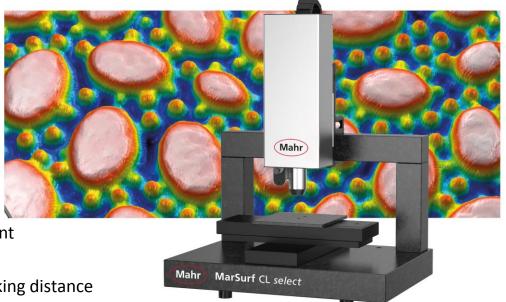
Flexible profilometer for quality control

MarSurf CP select - Sensors

Sensors

Point sensors	Туре	Name	Measurement range (mm)	Working distance (mm)	Diameter of measurement spot (µm)	Lateral resolution (µm)	Vertical resolution (μm)	Vertical resolution¹ (μm)	Measurement angle ² (°)	Thickness measurement range³ (mm)	Measurement rate (kHz)	Light source
	Chromatic sensors (CLA) ^{4.5}	CLA 0.6	0.6	6.5	4	2	0.020	0.006	90 ±30	0.9		
		CLA 1	1	19.1	3.5	1.8	0.035	0.010	90 ±45	1.5		
		CLA 3	3	22.5	12	6	0.100	0.030	90 ±30	4.5	4	LED
		CLA 6	6	35	16	8	0.200	0.060	90 ±25	9		
		CLA 10	10	70	24	12	0.300	0.100	90 ±20	15		

 ¹⁾ reduced measurement range
 2) larger measurement angle possible for scattering surfaces


³⁾ refraction index = 1.5

⁴⁾ other controllers upon request

⁵⁾ two sensors can be held in one holder

MarSurf CL select - Optical 2D/3D profilometry


- Optimized for large area measurements
- Customizable (modular system)*
- Large-area 3D measurements
- Very high measuring speed
- User-independent series measurements using automation software
- Excellent acceptance of steep flanks
- Coating thickness measurement and measurement of transparent materials
- · Large height measurement range with large working distance
- Production-optimized structure
- Robust and reliable
- User-friendly concept

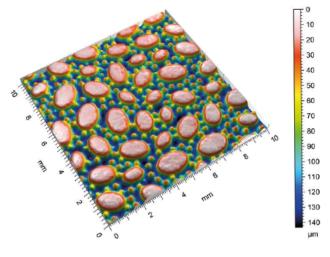
Fast line sensor for large-area measurement tasks

MarSurf CL select – Line sensor with 192 channels

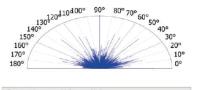
MarSurf CL select - Sensors

Sensors

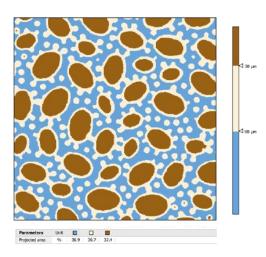
Line sensors	Туре	Name	Measurement range (mm)	Line length (mm)	Working distance (mm)	Diameter of measurement spot (µm)	Lateral resolution (µm)	Vertical resolution (µm)	Measurement angle ¹ (°)	Thickness measurement range² (mm)	Measurement rate (kHz)	Light source
	Chromatic	CLS 0.2	0.2	0.96 ± 0.01	5.3 ± 0.2	2	1	0.020	90 ±44	0.28		
	sensors CLS ³	CLS 1	0.95	1.91 ± 0.01	18.5 ± 0.2	4	2	0.080	90 ±33	1.35	2	LED
		CLS 4	3.9	4.78 ± 0.02	41 ± 0.2	10	5	0.320	90 ±20	5.5		


¹⁾ larger measurement angle possible for scattering surfaces

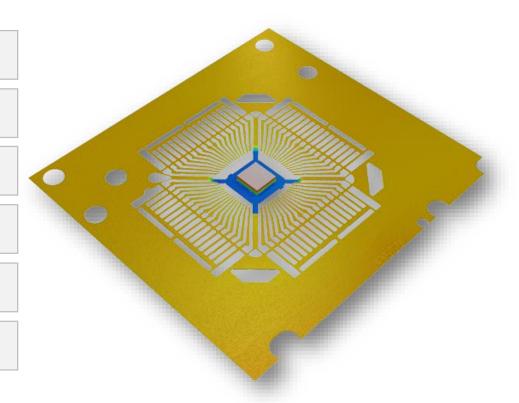
²⁾ refraction index = 1.5

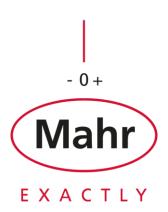

³⁾ other sensors upon request

MarSurf CL *select* – Applications



Automotive: Dekor, Interieur


Parameters	Value	Unit
Isotropy	86	%



MarSurf CP/CL select – Advantages

- Non-contact and non-destructive measurement
- Combination of high precision and high measurement speed
- Coating thickness measurement and measurement of transparent materials
- Precise detection with varying degrees of reflection and inclinations
- Compact design: robust and reliable
- Ideal for quality assurance and process control

